EUROPEAN PATENT SPECIFICATION

ANTITUMOR SUBSTANCE EXTRACTED FROM HEN-OF-THE-WOODS
ANTITUMOR SUBSTANZ EXTRAHIERT AUS GRIFOLA FRONDOSA
SUBSTANCE ANTITUMORALE EXTRAITE DE POLYPORE EN TOUFFE

Designated Contracting States:
CH DE ES FR GB IT LI NL

Priority: 08.03.1996 JP 5188096

Date of publication of application:
27.01.1999 Bulletin 1999/04

Proprietor: Yukiguni Maitake Co., Ltd.
Minami Uonuma-gun, Niigata 949-66 (JP)

Inventors:
• NANBA, Hiroaki
Hyogo 661 (JP)
• KUBO, Keiko
Hyogo 659 (JP)

Representative: Behnisch, Werner, Dr.
Reinhard-Skuhre-Weise & Partner,
Patentanwälte,
Postfach 44 01 51
80750 München (DE)

References cited:
• DATABASE WPI Section Ch, Week 8503 Derwent Publications Ltd., London, GB; Class B04, AN 85-015010 XP002093084 & JP 59 210901 A (NIPPON KINOKO KENKY), 29 November 1984
• PATENT ABSTRACTS OF JAPAN vol. 010, no. 131 (C-346), 15 May 1986 & JP 60 255733 A (NIHON TENSAI SEITOU KK), 17 December 1985
• DATABASE WPI Section Ch, Week 8742 Derwent Publications Ltd., London, GB; Class B04, AN 87-296463 XP002093085 & JP 62 209091 A (NIPPON TENSAI SEITOU KK), 14 September 1987
• DATABASE WPI Section Ch, Week 9629 Derwent Publications Ltd., London, GB; Class B04, AN 96-283423 XP002093086 & JP 08 119874 A (MATOBA Y), 14 May 1996
• DATABASE WPI Section Ch, Week 9601 Derwent Publications Ltd., London, GB; Class D13, AN 96-303816 XP002093087 & JP 08 131133 A (NIPPON CHROME KOGYO KK), 28 May 1996
• DATABASE WPI Section Ch, Week 9703 Derwent Publications Ltd., London, GB; Class B04, AN 97-029463 XP002093088 & JP 08 291078 A (MIO YG), 5 November 1996
• CHEM. PHARM. BULL., 36(5), (1988), IKUKO HISHIDA et al., p. 1819-1827.
• NIPPON SHOKUHIN KOGYO GAKKAISHI, 41(10), (1994), CUN ZHUANG et al., p. 724-732.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

[0001] The present invention relates to an antitumor substance having high immunopotentiating activity, which was extracted and fractionated from mycelia or fruit bodies of a "Maitake" mushroom (Grifola).

Background of the Invention

[0002] Polysaccharides consisting of β-1,6-linked glucose main chain with β-1,3-linked glucose branches or consisting of β-1,3-linked glucose main chain with β-1,6-linked glucose branches extracted from mycelia or fruit bodies of Grifola, are known to have anticancer activity (see Japanese Patent LOP Publication No. 210901/1984).

[0003] A process for producing an anticancer substance, which comprises a combination of the steps of extracting Grifola frondosa, Grifola gigantea (Tonbimai) or Laetiporus sulphureus (Masutake) with hot water, concentrating the extract under reduced pressure, precipitating the concentrate with an organic solvent, dialyzing the precipitates to remove low-molecular-weight substances, and extracting impurities with a lipophilic organic solvent to remove them from the dialysate, is also known (see Japanese Patent Publication No. 16047/1968).

[0004] However, the prior processes described in Japanese Patent LOP Publication No. 210901/1984 and Japanese Patent Publication No. 16047/1968 are not necessarily appropriate for providing a larger amount of pharmaceutical preparations and health foods efficiently from limited resources because their purification steps are considerably complicated and the products contain substances which inhibit immunopotentiating activity.

[0005] In Chem. Pharm. Bull., 36(5), (1988), Ikuko Hishida et al., 1819-1827, it is disclosed that components extracted from fruit bodies of Grifola frondosa exhibited a tumor growth inhibitory effect. In particular, an extraction and fraction method is disclosed on pages 1819 to 1820. However, removing floating matter on the liquid or in the liquid or matter adhered to the vessel wall is not disclosed in this citation in the context of the preparation of a glucan/protein complex.

[0006] In Nippon Shokuhin Kogyo Gakkaishi, 41(10), (1994), Cun Zhuang et al., 724-732, an extraction/fraction-related description is disclosed on pages 725 to 726. A method using ethanol (EtOH) is described which is used for the formation of precipitates. As it is the case for the citation described above, this publication does not disclose the removal of "floating matter on the liquid or in the liquid or matter adhered to the vessel wall".

[0007] WPI Abstract AN 85-015010 discloses a method wherein an extraction is performed with water at 120°C under pressure for 3 hours and, after cooling, the extract was centrifuged and EtOH is added to the supernatant for the formation of precipitates. This method exactly corresponds to the production method of substance B, which is contained as a comparative example in the description of the present invention.

[0008] PAJ Abstract, 010, No. 131 (C-346) merely discloses physical properties, characteristics and use application of β-D-glucan NMF. Again, as it is the case for the publications mentioned above, this document does not disclose the removal of floating matter on the liquid or in the liquid or matter adhered to the vessel wall.

Disclosure of the Invention

[0009] Under these circumstances, the present inventors conducted extensive research on a method of extracting Grifola and on various extracts obtained in its process, and as a result, it was possible to efficiently obtain an antitumor substance with superior immunopotentiating activity. The main feature is to enhance antitumor activity and an immunopotentiating activity by removing floating matter or matter adhered to the vessel wall by adding alcohol at a final concentration of 20 to 70 % by volume (low-concentration addition) to a water-soluble extract resulting from thermal extraction of mycelia or fruit bodies of Grifola with water.

[0010] That is, the present invention relates to a glucan/protein complex having immunopotentiating activity, which is prepared by the steps of:

(1) thermally extracting mycelia or fruit bodies of Grifola with water;
(2) adding alcohol to the resulting water-soluble extract at a final concentration of 20 to 70 % by volume (low-concentration addition), allowing said extract to stand in a vessel at a temperature of 1 to 25°C, and removing floating matter on the liquid or in the liquid or matter adhered to the vessel wall; and
(3) adding alcohol to said extract at a final concentration of 80 to 99 % by volume (high-concentration addition), allowing said extract to stand at 1 to 25°C, and recovering the resulting precipitates, or after the step (2), concentrating said extract to form precipitates or concentrating said extract into dryness in a usual manner, as well as to an antitumor agent comprising the same as an active ingredient.

[0011] In the present invention, the "Maitake" mushroom (Grifola) may be Grifola frondosa, Grifola albzcans Imaz.,
Grifola umbellatus, *GrifoLa gigantea* etc., and these can be used in fresh or dried form, if necessary cut into pieces, or in powder form.

[0012] The thermal extraction is carried out at 50 to 135 °C for 15 minutes to 3 hours. For rapid extraction, this treatment is carried out under pressure at 100 °C or more, for example, at 2 atmospheric pressure at about 120 °C in a pressure pot for 30 minutes to 1 hour or thereabout.

[0013] The water used is distilled water, purified water, ion-exchanged water, tap water etc. About 4 to 20 parts, preferably 4 to 10 parts by volume of water is used per part of dried *Grifola* by weight. If fresh *Grifola* is used, about 2 to 10 parts, preferably 2 to 5 parts by volume of water is used per part of *Grifola* by weight.

[0014] In the step (2), alcohol added to the extract can be methanol, ethanol etc. Alcohol is added to the extract at a final concentration of 20 to 70 % by volume. Alcohol with a water content of 0 to 50 % can be used. When left at a temperature of 1 to 25 °C for 1 to 20 hours after addition, there occurs floating matter on the liquid or in the liquid or matter adhered to the vessel wall and these are removed by filtration or with a pipette, net, etc.

[0015] Because removal of floating matter and matter adhered to the vessel wall brings about an enhancement in the antitumor activity and immunopotentiating activity of the extract, the step of removing said matter is extremely important. For this step, it is essential to add alcohol at a final concentration of 20 to 70 % by volume, preferably at final concentration of 30 to 60 %.

[0016] To the solution obtained in the step (2) is added alcohol at a final concentration of 80 to 99 %, preferably at a final concentration of 80 to 90 % by volume (high-concentration addition), and then it is allowed to stand at 1 to 25 °C, preferably at 1 to 5 °C to precipitate the desired substance, or alternatively the solution obtained in the step (2) is concentrated under heating to form precipitates or concentrated into dryness.

[0017] The properties of the resulting substance of the present invention are as follows:

- **Appearance**: hygroscopic powder in shades of brown.
- **Solubility**: dissolved in water, an alkaline solution and dimethyl sulfoxide.
- **Coloration reaction**: positive in anthrone reaction and ninhydrin reaction.
- **Aqueous solution property**: neutral to weakly acidic.
- **Molecular weight**: distributed around 1,000,000.

[0018] Analysis of the substance obtained in the present invention indicated that its main components are glucan and protein. After purification by column chromatography, it was found that the major component of the antitumor substance having immunopotentiating activity obtained by the present invention is a glucan/protein complex where the ratio of glucan to protein varies mainly in the range of 80:20 to 99:1 depending on the qualities of *Grifola* as the starting material, and conditions for extraction and purification, etc.

Best Mode for Carrying Out the Invention

(1) Extraction Method

[0019] 500 g of fruit bodies of dried *Grifola frondosa* were extracted with 5 L of distilled water at 120 °C for 60 minutes, and to 950 ml of the resulting soluble fraction was added ethanol at a final concentration of 60 % by volume. When this solution was allowed to stand at 4 °C for 12 hours, viscous and dark brown matter was formed on the liquid, in the liquid or on the vessel wall. This substance was removed with a pipette. After addition of ethanol at a final concentration of at least 80 % by volume, the solution was allowed to stand at a low temperature of 4 °C to give 3 g precipitates in shades of dark brown to black. The resulting substance was positive in both anthrone reaction and ninhydrin reaction. After purification by column chromatography, this substance was found to be a glucan/protein complex where the ratio of glucan to protein was 96:4.

[0020] As a result of its examination by gel filtration chromatography on a TSK gel GMPWxL column, it was found that its molecular weight is distributed around 1,000,000. When its glucan moiety was hydrolyzed and examined qualitatively for neutral glucan by high performance liquid chromatography, only glucose was detected.

[0021] The examination of its protein moiety by an automatic amino acid analyzer (only tryptophan was examined by high performance liquid chromatography) indicated that the protein is composed of glutamic acid, aspartic acid, alanine, leucine, lysine, glycine, isoleucine, serine, valine, proline, threonine, arginine, phenylalanine, tyrosine, histidine, tryptophan, methionine, cystine etc.

(2) Antitumor Test

[0022] The substance obtained in (1) above (referred to hereinafter as "Substance A") and a dried substance obtained in the same manner as in (1) above except that the step of adding alcohol at low concentration (final concentration of 20 to 70 % by volume) for removing floating matter on the liquid or in the liquid or matter adhered to the vessel wall was not carried out (referred to hereinafter as "Substance B") were dissolved respectively in physiological saline. Each
solution was administered intraperitoneally into C3H mice with transplanted MM-46 carcinoma 10 times at a dosage of 0.1 mg/kg to examine its effect on tumor growth inhibition. The results are shown in Table 1.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Tumor Growth Inhibition (%)</th>
<th>after transplanting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day 20</td>
</tr>
<tr>
<td>Control group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(given physiological saline)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Group given substance A</td>
<td></td>
<td>83.4</td>
</tr>
<tr>
<td>Group given substance B</td>
<td></td>
<td>71.2</td>
</tr>
</tbody>
</table>

(15 mice per group, *t*-test: there was a significant difference of 5% or less).

[0023] The tumor growth inhibition (%) was determined according to the following formula:

\[
\text{Tumor Growth Inhibition} (\%) = [1 - (\text{average tumor weight (g) in treatment group})/\text{average tumor weight (g) in control group})] \times 100
\]

[0024] The group given Substance A indicated a significantly stronger inhibitory effect on tumor growth than that of the group given Substance B. Five days after each test substance was given, macrophages and killer T cells were collected from the control group (given physiological saline only), the group given Substance A and the group given Substance B, and the activity of the cellular immunocompetent cells was determined in terms of uptake of \(^3\text{H}\)-thymidine. The results are shown in Table 2.
It was found from the above results that Substance A exhibits stronger antitumor activity and immunopotentiating activity than those of Substance B.

Industrial Applicability

The above results indicate that immunopotentiating activity and tumor growth inhibitory activity are enhanced by removing floating matter on the liquid or in the liquid or matter adhered to the vessel wall occurring by adding alcohol at a final concentration of 20 to 70 % by volume to the hot water extract from *Grifola*.

Hence, the feature of the present invention lies not in simply extracting polymeric β-glucan, but in effectively providing a glucan/protein complex having high immunopotentiating activity from limited resources by a simple method.

The substance obtained according to the present invention is of low toxicity and high safety and can be orally administered as health foods and pharmaceutical preparations, especially antitumor agent, in the form of tablets, capsules, liquid, syrup etc.

Claims

1. A glucan/protein complex produced by the steps of:
 (1) thermally extracting mycelia or fruit bodies of *Grifola* with water;
 (2) adding alcohol to the resulting water-soluble extract at a final concentration of 20 to 70 % by volume, allowing said extract to stand in a vessel at a temperature of 1 to 25°C, and removing floating matter on the liquid or in the liquid or matter adhered to the vessel wall; and
 (3) adding alcohol to said extract at a final concentration of 80 to 99 % by volume, allowing said extract to stand at 1 to 25°C, and recovering the resulting precipitates.

2. A glucan/protein complex produced by the steps of:
 (1) thermally extracting mycelia or fruit bodies of *Grifola* with water;
 (2) adding alcohol to the resulting water-soluble extract at a final concentration of 20 to 70 % by volume, allowing said extract to stand in a vessel at a temperature of 1 to 25°C, and removing floating matter on the liquid or in the liquid or matter adhered to the vessel wall; and
 (3) concentrating said extract to form precipitates, or concentrating said extract into dryness.

3. The glucan/protein complex according to claims 1 or 2, wherein the ratio of glucan to protein is in the range of 80:20 to 99:1.

4. An antitumor agent having immunopotentiating activity, which comprises the glucan/protein complex of claims 1 or 2 as an active ingredient.

5. The glucan/protein complex according to claims 1 or 2, wherein *Grifola* is *Grifola frondosa*, *Grifola albicans* Imaz. *Grifola umbellatus* or *Grifola gigantea*.

6. The glucan/protein complex according to claims 1 or 2, wherein alcohol added to the water-soluble extract obtained by thermally extracting mycelia or fruit bodies of *Grifola* with water has a final volume concentration of 30 to 60 %.

7. A method for producing a glucan/protein complex having high immunopotentiating activity, comprising the steps of:
8. A method for producing a glucan/protein complex having high immunopotentiating activity, comprising the steps of:

(1) thermally extracting mycelia or fruit bodies of *Grifola* with water,
(2) adding alcohol to the resulting water-soluble extract at a final concentration of 20 to 70 % by volume, allowing said extract to stand in a vessel at a temperature of 1 to 25 °C, and removing floating matter on the liquid or in the liquid or matter adhered to the vessel wall; and
(3) adding alcohol to said extract at a final concentration of 80 to 99 % by volume, allowing said extract to stand at 1 to 25 °C, and recovering the resulting precipitates.

Patentansprüche

1. Ein Glukan/Proteinkomplex, hergestellt durch folgende Schritte:

(1) Thermisches Extrahieren von Mycelien oder Fruchtkörpern von *Grifola* mit Wasser;
(2) Zusetzen von Alkohol zum sich ergebenden wasserlöslichen Extrakt in einer Endkonzentration von 20-70 Vol.-%, Stehenlassen des Extraktes in einem Gefäß bei einer Temperatur von 1-25 °C und Entfernen von Schwebstoffen auf der Flüssigkeit oder in der Flüssigkeit oder von Stoffen, die an der Gefäßwand anhaften; und

2. Glukan/Proteinkomplex, der durch folgende Schritte hergestellt ist:

(1) Thermisches Extrahieren von Mycelien oder Fruchtkörpern von *Grifola* mit Wasser;
(2) Zusetzen von Alkohol zum sich ergebenden wasserlöslichen Extrakt in einer Endkonzentration von 20-70 Vol.-%, Stehenlassen des Extraktes in einem Gefäß bei einer Temperatur von 1-25 % und Entfernen von Schwebstoffen auf der Flüssigkeit oder in der Flüssigkeit oder von Stoffen, die an der Gefäßwand anhaften; und
(3) Konzentrieren des Extraktes zur Bildung von Präzipitat oder Konzentrieren des Extraktes bis zur Trockne.

4. Antitumormittel mit einer immunverstärkenden Aktivität, das den Glukan/Proteinkomplex der Ansprüche 1 oder 2 als aktiven Inhaltsstoff umfasst.

5. Glukan/Proteinkomplex nach Anspruch 1 oder 2, wobei *Grifola Grifola frondosa*, *Grifola albicans Imaz.*, *Grifola umbellatus* oder *Grifola gigantea* ist.

6. Glukan/Proteinkomplex nach Anspruch 1 oder 2, wobei der dem wasserlöslichen Extrak t zugesetzte Alkohol, der durch thermisches Extrahieren von Mycelien oder Fruchtkörper von *Grifola* mit Wasser gewonnen wurde, eine Endvolumenkonzentration von 30-60% aufweist.

7. Verfahren zur Herstellung eines Glukan/Proteinkomplexes mit einer hohen immunverstärkenden Aktivität, das folgendes umfasst:

(1) Thermisches Extrahieren von Mycelien oder Fruchtkörpern aus *Grifola* mit Wasser;
(2) Zusetzen von Alkohol zum sich ergebenden wasserlöslichen Extrakt in einer Endkonzentration von 20-70 Vol.-%, Stehenlassen des Extraktes in einem Gefäß bei einer Temperatur von 1-25 °C und Entfernen von Schwebstoffen auf der Flüssigkeit oder in der Flüssigkeit oder von Stoffen, die an der Gefäßwand anhaften; und
8. Verfahren zur Herstellung eines Glukan/Proteinkomplexes mit einer hohen immunverstärkenden Aktivität, das die folgenden Schritte umfasst:

(1) Thermisches Extrahieren von Mycelien oder Fruchtkörpern von Grifola mit Wasser;
(2) Zusetzen von Alkohol zum sich ergebenden wasserlöslichen Extrakten in einer Endkonzentration von 20-70 Vol.-%, Stehenlassen des Extraktes in einem Gefäß bei einer Temperatur von 1-25 °C und Entfernen von Schwebstoffen auf der Flüssigkeit oder in der Flüssigkeit oder von Stoffen, die an der Gefäßwand anhaften; und
(3) Konzentrieren des Extraktes zur Bildung von Präzipitaten oder Konzentrieren des Extraktes bis zur Trockne.

Revendications

1. Complexe glucane/protéine produit par les étapes de :

(1) extraction thermique des mycéliums ou des sporophores de *Grifola* avec de l’eau ;
(2) addition d’alcool à l’extrait soluble dans l’eau obtenu à une concentration finale de 20 à 70 % en volume, laisser ledit extrait au repos dans une cuve à une température de 1 à 25°C, et éliminer les matières flottantes sur le liquide ou dans le liquide ou les matières adhérant à la paroi de la cuve ;
(3) addition d’alcool audit extrait à une concentration finale de 80 à 99 % en volume, laisser ledit extrait au repos entre 1 et 25°C, et récupérer les précipités obtenus.

2. Complexe glucane/protéine produit par les étapes de :

(1) extraction thermique des mycéliums ou des sporophores de *Grifola* avec de l’eau ;
(2) addition d’alcool à l’extrait soluble dans l’eau obtenu à une concentration finale de 20 à 70 % en volume, laisser ledit extrait au repos dans une cuve à une température de 1 à 25°C, et éliminer les matières flottantes sur le liquide ou dans le liquide ou les matières adhérant à la paroi de la cuve ;
(3) concentration dudit extrait pour former des précipités ou concentration dudit extrait à sec.

3. Complexe glucane/protéine selon les revendications 1 ou 2, dans lequel le rapport de glucane à la protéine est dans la plage de 80:20 à 99:1.

4. Agent antitumoral ayant une activité immunostimulante, qui comprend le complexe glucane/protéine des revendications 1 ou 2 en tant que substance active.

5. Complexe glucane/protéine selon les revendications 1 ou 2, dans lequel *Grifola* est *Grifola frondosa, Grifola albi-cans Imaz., Grifola umbellatus* ou *Grifola gigantea*.

6. Complexe glucane/protéine selon les revendications 1 ou 2, dans lequel l’alcool ajouté à l’extrait soluble dans l’eau obtenu par extraction thermique de mycéliums ou de sporophores de *Grifola* avec de l’eau a une concentration en volume finale de 30 à 60 %.

7. Procédé pour produire un complexe glucane/protéine ayant une activité immunostimulante élevée, comprenant les étapes de :

(1) extraction thermique des mycéliums ou des sporophores de *Grifola* avec de l’eau ;
(2) addition d’alcool à l’extrait soluble dans l’eau obtenu à une concentration finale de 20 à 70 % en volume, laisser ledit extrait au repos dans une cuve à une température de 1 à 25°C, et éliminer les matières flottantes sur le liquide ou dans le liquide ou les matières adhérant à la paroi de la cuve ;
(3) addition d’alcool audit extrait à une concentration finale de 80 à 99 % en volume, laisser ledit extrait au repos entre 1 et 25°C, et récupérer les précipités obtenus.

8. Procédé pour produire un complexe glucane/protéine ayant une activité immunostimulante élevée, comprenant les étapes de :

(1) extraction thermique des mycéliums ou des sporophores de *Grifola* avec de l’eau ;
(2) addition d’alcool à l’extrait soluble dans l’eau obtenu à une concentration finale de 20 à 70 % en volume,
laisser ledit extrait au repos dans une cuve à une température de 1 à 25°C, et éliminer les matières flottantes sur le liquide ou dans le liquide ou les matières adhérant à la paroi de la cuve; et

(3) concentration dudit extrait pour former des précipités ou concentration dudit extrait à sec.